GIS 540 Exam I

Course number: GIS 540

Instructor: Dr. Tateosian

Time Limit: 120 minutes

Test ID: exam I

exam).

Total points available	
Total points deducted	
Total points earned	

other students before the exams are returned.

Materials allowed: Scrap paper (students may not take scrap paper away from the

questions. Write name and unity login id (e.g. jkrowlin) on each page. Return all pages of the exam and scrap paper to the proctor. Do not discuss the exam with

General instructions: Write clearly. Use complete sentences for short answer

Name	NCSU Login ID

1. In the left table, match the Python expression with the term that describes it. In the right table, specify whether the code would evaluate as True or False if used as a Boolean expression in a conditional statement. There is one expression that can't be used this way; For this one, write ERROR. Assume that fileN is 'data1.shp', inF is 'data2.shp', and x is 5.

Match	Python code	Description	
	fileN[3]	A. assignment	
	fileN[:-4]	B. comparison	
	"workspace"	C. exponentiation	
	fileN == inF	D. integer division	
	fileN = inF	E. string literal	
	fileN + inF	F. indexing	
	x + 3	G. slicing	
	1/x	H. empty list	
	x**3	I. addition	
	[]	J. concatenation	

Python code	True or False?
fileN[3]	
fileN[:-4]	
"workspace"	
fileN == inF	
fileN = inF	
fileN + inF	
x + 3	
1/x	
x**3	
[]	

2. Label each item in the list as **A** for arcpy method, **F** for built-in function, **K** for keyword, **L** for list method, **M** for built-in module, **O** for os.path method, or **S** for string method. *There are 2 built-in modules and three of each of the rest.*

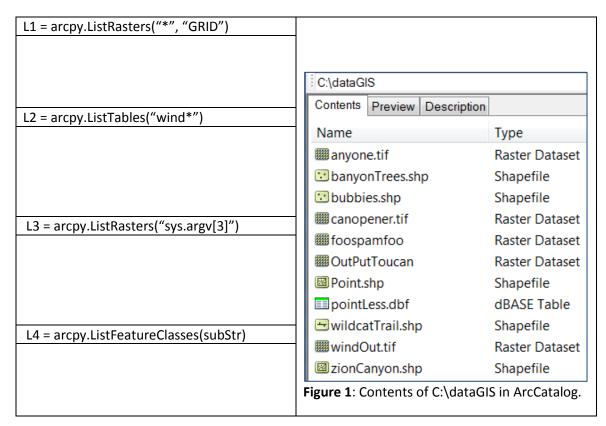
Describe	reverse	float	getmtime	strip
sys	CheckOutExtension	replace	if	splitext
dirname	while	append	format	sort
int	os	or	range	Buffer_analysis

3. Write a Python WHILE-loop equivalent to the following FOR-loop.

FOR-loop	WHILE-loop
for x in range(2,12,2): print x	

Name	NCSU Login ID

4. Use the script arguments on the left and the code fragments in the middle in the table below to give the output. If the code would cause an error, write *ERROR* and give a *brief explanation*.


Arguments	Python code	Output or cause of error
8 5	a = sys.argv[1] b = sys.argv[2] print a + b	
C:/data p.shp 50	<pre>d = sys.argv[1] f = sys.argv[2] u = sys.argv[3] print '{0}/{1} has {2} polys'.format(d,f,u)</pre>	
8	myList = [7, 4, 6] + [int(sys.argv[1])] max = max(myList) print max(myList)	
35	<pre>latInput = int(sys.argv[1]) latNC = 35.78 if latInput < int(latNC): print 'South' else: print 'North'</pre>	
SUBDIVISION	fd = sys.argv[1] fd.lower() print fd	
a.txt b.shp c.qt	argList = sys.argv for f in argList: print os.path.splitext(f)[1],	
АВС	<pre>myList = [] myList.append(sys.argv[1]) myList.append(sys.argv[2]) myList.append(sys.argv[3]) myList.reverse() print myList</pre>	
C:/data/bird.JPG	<pre>dsc = arcpy.Describe(sys.argv[1]) if dsc.dataType == "ShapeFile" or "Folder": print "Sh or Fo" else: print "Other"</pre>	
GIS	<pre>print 'I'm good at {0}'.format(sys.argv[1])</pre>	

5. Under each arcpy listing method in the table below, give the list contents. If the list is empty, write EMPTY and give a brief explanation. Assume the user passed in the following arguments:

C:/dataGIS anyo *one

Also assume the following code has been executed:

import arcpy, sys
arcpy.env.workspace = sys.argv[1]
subStr = '*{0}*'.format(sys.argv[2])

- 6. Answer the following questions about the traceback error shown in the box below:
 - a. Which line number of 'convertLat.py' did the error occur on?
 - b. What is the name of the exception?
 - c. Explain why the exception was thrown.

```
Traceback (most recent call last):

File "C:\Python27\ArcGIS10.2\Lib\site-packages\scriptutils.py", line 326, in RunScript
exec codeObject in __main__.__dict__

File "C:\temp\convertLat.py", line 23, in <module>
decimalDegrees = float(degree + (minute/60 + second/3600))

NameError: name 'degree' is not defined
```

7. Complete the script, addYears.py, started in the box below. It should take two user arguments: a date stamp (formatted YYYY-DD-MM) and an integer, x. The code should print a date stamp with x years added to the original date stamp. For example, if the user enters 2011-01-28 and 5, the script should print "The updated date stamp is 2016-01-28".

```
# addYears.py
import sys
dateStamp =

x =

print 'The updated date stamp is {0}'.format(newDateStamp)
```

- 8. This script should take a polygon shapefile and set the values of its 'sqkmArea' field to the polygon areas (in km²). If the field does not exist yet, the script should create the field. In the box below, correct the 9 mistakes in the code.
- import arcpy, sys
 inputFile = sys.argv(1)
 areaField == 'sqkmArea'
 fields = arcpy.ListFields()
 nameList = [f.type for f in fields]
 if areaField in nameList:
 arcpy.AddField_management(areaField, 'Double')
 expression = "!shape.length@squarekilometers!"
 arcpy.CalculateField_management(inputFile, areaField, expression, 'PYTHON')
 print "Field {0} calculated in the input shapefile {1}".format(inputFile, areaField)

9. The script 'PointsToLine_nonBatch.py' in the first box below creates a Shapefile with lines connecting the points in the 'C:/data/nests.shp' file. Rewrite this as 'PointsToLine_Batch.py' in the second box. The batch version should call the Points to Line (Management) tool on all the Point Shapefiles in the 'C:/data' directory whose names contain the substring "tucan".

PointsToLine_nonBatch.py
import arcpy, os
arcpy.env.workspace = 'C:/data'
inputFile = 'nests.shp'
outputFile = os.path.splitext(inputFile)[0] + 'Line.shp'
arcpy.PointsToLine_management(inputFile, outputFile)
print '{0} created.'.format(outputFile)

 1
 # PointsToLine_Batch.py

 2
 3

 4
 5

 6
 7

 8
 8

10. Fill in the blanks to complete getSize.py. Use sys.argv, os.path.dirname, os.listdir, and os.path.getsize to print the size of each of the files in the directory where the script resides.

1 # getSize.py

2 import _____

3 scriptPath = _____

4 scriptDirectory = _____

5 | fileList = _____

6 **for**_____

7 fullPathFileName = _____

8 theSize = _____

print _____

11. By design, handleShapes.py should determine the data type of an input file. If the input file is a polygon shapefile with more than 50 records, the script should find a point inside each polygon. If it's a point shapefile, the script should find the mean center of the points. Answer questions a)-g) pertaining to handleShapes.py.

- # handleShapes.py
 import arcpy
 import arcpy

 inputFile = sys.argv[1]

 dsc = arcpy.env.Describe(inputFile)

 count = arcpy.GetCount(inputFile)

 if (dsc.dataType == 'ShapeFile' and dsc.shapeType == 'Polygon') or count > 50:

 outputFile = inputFile + 'out.shp'

 arcpy.FeatureToPoint_management (inputFile, outputFile, 'INSIDE')

 else dsc.dataType == 'ShapeFile' and dsc.shapeType == 'Point'

 arcpy.MeanCenter_management(inputFile, outputFile)

 print "Mean center calculated for {0}".format(inputFile)
 - a) The Get Count tool is in the ______toolbox and the Mean Center tool belongs to the _____toolbox.
 - b) Which (if any) ArcGIS environment settings does handleShapes.py set?
 - c) Line 6 has a logic error involving a compound conditional keyword. Describe the characteristics files for which this statement is true.

- d) If the value of inputFile is 'C:/data/park.shp' and outputFile is set as shown on line 7, what is the value of outputFile?
- e) If outputFile is set on line 7, what is the value of outputFile when the script reaches line 10?
- f) If the rest of the script works, under what conditions would line 11 report that the mean center has been calculated?
- g) Inside the box, show how to correct the 10 errors in this script.